-A187 964 PROBABILITY BOUNDS FOR M-SKOROHOD OSCILLIITIONS(U) MTH /4
MIM WIV AT CMPEI. HILL CENTER FOR STOCHA:

UNCLASSIFIED FFOSR-TR—O?-!...Q F49‘20-85-¢-l F/G 12/2




R R L LI, D LT LI R .k a%e i %P mhh a8 gt mth aPE aa AR bk e p b e e @thiwtom e tie % n

PR N
g e .

[l

2.5
\

e

.
4
B 1
"
[}

| ||
|
l I

“'O
JreeeFECER

EF

[

)
O

L4 e

MICONCOPY RESALYTICN TEST CHART
1964 A

o o e e

-

< oy
L

N

. -
- -

P

A ST



AD-A 187 ¢g81. oMENT ATION PAGE

: /
,: 1o. RESTRICTIVE MARKINGS /
AN UNMLLAID LI 1Ly
¥
S 20, SECLRITY CLASSIFICAT'ON & 3 DISTRIBUTION/AVAILABILITY OF REPQRT
N L . - . .
HA Aporoved for public release; Cistritbution
2. JECLASSIFICATION/DOWNGRA unlimited
L)
4 PERFCAMING QRGANIZATION A T NUMBE S 5. »1o~mnar.zan PORTIN )
- - -
Technical Report No. 173 Cce 8‘ 7 |\ Uﬁ4
6a. VAME OF PEAFOAMING QRGANIZATION  [6b, 3FFICE SYMBOL | 7a NAME 3F MONITORING DRGANIZATION
. . \ , Af appucsoie: ACACH Ak
University of horth Carolina SFOSR/NM
6¢. ADORESS (City. Stace und Z1P Coae! 70 AOPRE§S C.ty. State ana Z1P Coae
Statistics Oept. Buﬂqu 410
Phillips kall 039-A Bolling AFB, DC 20332-6448
Chaoel Hill, NC 27514
8a. NAME OF FUNDING/SPONSORING 80. OFFICE SYMBOL 19 PROCUREMENT .NSTRUMENT (DENTIFICATION NUMBER
QORGANIZATION 1 applicaoie:
,, F19620 85 C 0144
AFQOSR e
8c. AQORESS (City. State ana Z1P Coae) 10 SOURCE OF FUNDING NOS
Building 410, . 2ROGAAM | PROJECT 1 TASK WORK UNIT
Bolling AFE, DC 20332-6448 ZLEMENT NO | NO. i NO. NO.
. = a3 —
V1. TITLE tnciude Security Ciassification: 6.1102F 2304 ! A 5
Probability bounds for M-Skorohod oscillationg : : v
12. PEASONAL AUTHORIS)
Avram, F, and Taqqu, M.S.
13a TYPE OF AEPORT 13b. TIME COVERED 14 DATE QF AEPORT /Y¥r, Mo., Day) 15. PAGE COUNT
Preprint caom 10/1/86 9/30/8b December 1986 16
16. SUPPLEMENTARY NOTATION
17 CQSATI CODES 18. SUBJECT TEAMS .Connnue on reverse if necessary and idenitfy by block number)
FIELD sRoue | sus. GR Keywords and phrases:aWeak convergence, Skorohod
topologies, sub-triadditivity. .. 9
|

19. ABSTRACT 'Continue on reyerse if necessary ana identify by dMocx numoer)

- 2 Billingsley developed a widely useg method for proving weak convergence

with respect to the sup-norm and JltSkorohod topologies, once convergence

of the finite-dimensional distributions has been established. ;Here we show
that+Billingsley's method works not only for J oscillations, but also for M
oscillations. This is done by idertifying a common property ot the J and

M functions, called sub-triadditivity, and then showing that Billingsley's
approach in the case of the .J function cen be adequately modified to apply to

1

any sub-triadditive function.

ATRLLZ 204 WL

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION
+ D — —— ! ' f

»:. UNCLASSIF!ED/UNL)MIYEDJG SAME AS APT _, OTIC USERS UNCLASSIFIED
",:. 22a. NAME OF AESPONSIBLE INDIVIDUAL 220 TELEPHONE NUMBER . ) %) [22¢c OFFICE SYMBOL
) . N vlncludca.\rva Code) "\p ] AFOSP/I'“
' i = v b - - | v/
> Reeay—Raviteh ﬂ\ i\ (\Ll;‘\ < 919-962-2307 N H
B,
) DO FORM 1473, 83 APR €0ITION OF 1 JAN 73 1S OBSOLETE. UNCIASSTEILED
;. SECURITY CLASSIFICATION OF THIS PAGE
’
'.n
A NS LY LWL N AT AT AT A GT R -

- " " u,” A -\‘ .\f\- \-f‘.“l".‘.‘.r'-,,-th ,,\.,._ WL L e R T

v v - RIS, R S SR (A Nt




B A A R S T R W S L U UL U T R N s R R I O R R R R R R Ty ooy Y P T oK NLARS S ¢

T

AFOSR.TK. =

! 1004
:
b
CENTER FOR STOCHASTIC PROCESSES
-
- Department of Statistics
N University of North Carolina
S Chapel Hill, North Carolina
ks
4]
.:-i
\!
P
. "
N
5
e,
e
s PROBABILITY BOUNDS FOR M-SKOROHOD OSCILLATIONS
) by
J .
Florin Avram
E? and
L Murrad S. Taqqu
e
()
-,
.A
L)
'5 ) Technical Report No. 173

December 1986

N

L

> ol .
SR \\..\\.\ AN D e -
a (\{ '.‘\ N \.’\"\ L ! ., AN \'\."\. "\‘\. \'r\‘ '\.‘ "

INTNT A




AN NN Ry

PN LN LIS LSS LAY . JCFT FEFL IR IO W .
RN N U WA AT U R A R O K R N X TN U T O e "y a%h 2'4 ath ata of

PROBABILITY BOUNDS FOR M-SKOROHOD OSCILLATIONS

Florin Avram*
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Abstract

Billingsley developed a widely used method for proving weak convergence
with respect to the sup-norm and J,-Skorohod topologies, once convergence
of the finite-dimensional distributions has been established. Here we shouw
that Billingsley’s method works not only for J oscillations, but also for Af
oscillations. This is done by identifying a common property of the J and
M functions, called sub-triadditivity, and then showing that Billingsley's
approach in the case of the J function can be adequately modified to apply

to any sub-triadditive function.
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1. Statement of results 9
3,
o~
Billingsley (1968) developed a widely used method for proving weak convergence with s
: >
respect to the sup-norm and J,-Skorohod topologies, once convergence of the finite-dimen-
sional distributions has been establiched. The idea is to replace the evaluation of proba- ~
bilities of large oscillations by the evaluation of the probability of large increments at fixed
given times. Here we show that Billingsley’s method can be made to work not only for J X
oscillations, but also for M oscillations. We also investigate a limiting case. T
We use these results in Avram and Taqqu (1987) to study the weak convergence to :'_
. 4
the Lévy a-stable process of normalized sums of moving averages that have at least two !
non-zero coefficients. In that paper, we show that J;-weak convergence does not hold and R
we provide sufficient conditions for M; convergence. ~
i3
Let
(1.1a) J(z.19.73) = min(|z; — 7] |73 — 72]). g
N
(1.15) M(x,.2,.73) = the distance from ry to [7;. 23] p
’ . ';
~ 0 if 7, € [7;.73] ,!
J(zy,72,73) otherwise. '
Let H stand for either J or M, set
Hz(tyt.12) = H(Z(1),Z(1). Z(12)). R
N

and define the H oscillation of Z(t) as

(1.2) wi(Z)= sup Hz(t),t,1).
1y <t<iy
n<tg ll<6

e Y
L] '

MY

This w! is of interest because, if Z, arc D|0,1] processes whose finite-dimensional dis-

6 .
tributions converge to those of a process Z, then the H;-weak convergence of Z, to Z is :
]

equivalent to the convergence in probability of u{'(Z,,) to 0, uniformly in n, as § approaches E
0 (see Skorohod (1956), Theorem 3.2.1). '
~




)
'.“ 93,1, §'~

Throughout the paper, we will consider a process Z(f). 0 < t < 1, satisfying the

assumption
(A) P{Hz(n.,t.,tz) Zc} < Lev(ty — )77,

for some constants L >0, v > 0and 8 > 0.
We shall also assume that

(B) There exists a number n so that Z(t) is pathwise constant on

(L, %1 fori=0,1,...,n— L.

Condition (B) is one of convenience and it will be weakened in the case 3 > 0 (see Corollary
1 below.)
The following result states that P{wf(Z) > ¢} satisfies a bound similar to that of

P{Hz(t,.t,t3) 2 ¢} given in (A).

Theorem 1. Let H stand for either J or M. Let Z(t) be a process satisfying assumptions

(A) and (B). Then, Z also satisfies

(1.3) P{wH(Z) > ¢} < C(v,B8,n)Lc V67,
where
{ C(v,5) if3>0
C(v,B,n) =
C(v,B)(Inn)®*2 if3=0

denotes a constant independent of ¢,6 and the distribution of Z.

Theorem 1 is proved in this section.

Remarks. (1) Throughout the paper, we adopt the convention that “constants” may
depend on v and 3, but not on ¢,6 and the distribution of Z. Dependence or independence
on n will be spelled out in each case.
(2) When H = J, Theorem 1 reduces basically to Theorem 12.5 of Billingsley (1968).
(3) When 8 > 0, C(v, B,n) is independent of n. Assumption (B) can then be replaced
by Z(t) € D[0,1] a.s.. Indeed, fix n and divide [0,1] in 2" equal parts; then, apply

Theorem 1 to the step function approximation Z,(t) of Z(t) built by using the values of

3
RSO N SR TR np A T AR AP Sy - e
i R s
LN '!'l.ll, " l' "%y ‘l W™ LAY Rt O l\"o * " } \

acad

¢ .('- Joy Y ._*...



PR T R R ARA R TR Sp dia B0a del 2g A0 A8 8kl ab - 2bivat cab cab tif % B tad al &

Z at i/2",1 =1,...,2". Since Z(t) € D[0,1] a.s. implies that almost all paths of Z are

right-continuous and wf (Z,) — wf/(Z) as., we have.

P{f(2) 2 ¢} = lim P{wf/(Z,) 2 } < C(v.5)L¥67,
and hence

Corollary 1. Let H stand for either J or M and let Z(t) be a process satisfying (A). with
R > 0, and with paths in D|0,1} a.s.. Then

(1.4) P{H(Z)> ¢ < Cw.3)Lvé?,

where C(v,3) is a constant.

Theorem 1 is proved by identifying a common property of the J and M functions.
which we call sub-triadditivity. and then by showing that Billingsley’s approach in the case

of the J function can be adequately modified to apply to any sub-triadditive function.

First some notation; let
0.1} = {(rl.r.rz): 0<t <t<t, <1

For any function f : [0.1]2 — R ", and interval I = [¢,.1,]. we introduce three new

functions:

(1.5) J1=f(thty) = sup  f(t).1.t,).

te ty .ty

o, 1]3S — R™, defined by

(1.6) Pttt = sup  f(h0.0),
el s,
ﬂ:,elt.‘(z‘

and

(1.7) Ji=T(t.t2):=  sup  f(a.b.e).

ty<a<best,
Billingsley’s method consists of showing successively that the bound in assumption (A)
leads to similar bounds for probabilities involving H 2z, Hz and w6H(Z). The next theorem
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is our basic result. It identifies conditions for the first two steps of the extension. namely

Hz; — Hz — HZz and uses the notion of sub-triadditivity defined in Section 3.

Theorem 2. (a) Let Z(t) be a process satisfying assumptions (A) and (B). and let [7 be
a random funetion: [0.1]7 — R~ which 15 a.s ifuner sub-triadditive (see (8.1). (3.2 and

(8.8) Jor a definition).
Iy

(1.8) P{fz(’l»t-fz)zf}SLf_"(fz—fl)]d

for some constants L >0, v >0 and 3 > 0, then

(1.9) P{TZ((],[2) > c} <2K(v.3.n)Le ¥ty — )4
where
{K(v.@) if 3> 0.
K(v.3.n) =
K(v,8)(log,n)t"! if 3=0

(see (2.4) for the ezact formula for the eonstant K(v.3.n)).

(b) If [z ts in addition outer sub-triadditive (see (3.3).(3.4) for a definition), then

(1.10) P{Tz(’x-'z)Z(} <A@ 3,n)Le V(- 1y) 7 ,
where
A(v, B) tf 3>0
A(v.3,n) = {
A(v,B)(log,n)?"% if 3=0

(sce (3.10) for the exact formula for the constant A{v,3,n).)
Theorem 2 is proved in Section 3.

The last step of the extension Hz — w}(Z) always works, as the next Lemma shows.

Lemma 1. If
P{.T.Z(tlstz) 2 f} < Le Yty - 1))'7

then
P{wg(fz) 2(} <201 vel, '
5
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ws(fz):= sup  [fz(t).t.ty).
<ty
0<ty—1y<¢

Proof of Lemma 1. Let m = [67!] = [67!] + 1 and partition (0. 1] with
te, i=1,...,m, t,.; —t; < 6 where 1o = 0 and {,,,.; = 1. Note that {ws{fz) > ¢} implies

{ max fz(t,,t,,2)>e} Hence

$=0,...,m
P{wo(fz)Z(}S':P{ o) }

< (m=1)Lev(26))

< 21PLe Vs,
|

Theorem 1 follows now as a particular case of Theorem 2(b), since the functions

Jz(t).t.t3) and Mz(t),t,t;) are a.s. inner and outer sub-triadditive (see Appendix).

When 3 = 0, a better bound than in (1.3) may be obtained. if Z satisfies a stronger

assumption than (A), namely

(A,) P{H%([},f,lQ))(}SL(_V(fz—tl)]‘s.
where
(1.11) Hy(t).t,1y) := sup Hg(t].1.15),
ey
1{1,6':,112‘

and where H stands for either J or M. Because the function H} is inner sub-triadditive

(see Appendix), one can apply Theorem 2(a). This yields
P{Hz(t1,t;) > ¢} < 2|log,(d4n)]* ! Le¥ ™!

where we used (2.4) to evaluate K (v,0,n). Applying Lemma 1, we obtain

Theorem 3. Let H stand for either J or M, and let Z(t) satisfy assumption (A') with
B =0, and assumption (B). Then

(1.12) P{w{'(Z) > (} < 4llog, (4n)]**1Lev.
6
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The paper is organized as follows:

In Section 2 we give a general formulation of the classical method of bisection used in

Billingsley (1968).
In Section 3 we define sub-triadditivity and prove Theorem 2. using the method of

bisection.

The sub-triadditivity of J, M, and f} is established in the Appendix.

2. The Bisection Method

The bisection method seems to have originated with Menchoff (1923) in the context of
a maximal inequality for partial sums of orthogonal random variables (see Stout (1974),
Th. 2.3.1). It is used by Billingsley (1968) to establish a more general maximal inequality.

The following proposition is a formalization of the bisection method.

Consider a random field g; indexed by subintervals I of [0.1]. For every I C [0.1].
denote by I' the first half of 7, and by I" the second half of 1. Let m( ) denote Lebesgue

measure.

Proposition 1. Suppose that a random field g; satisfies the inequality

(2.1) g1 < max(gp.gy) + hy
where
(2.2) Plh; > ¢} < MV (m(I)' P,

with M constant, v > 0, 8 > 0. Suppose also that there ezists an integer n such that for
every J C [0,1) with m(J) < L, one has

(2-3) P{g; > ¢} < Mc™¥(m(J))!*A.
Then, for every I C [0,1],

P{g; > ¢} <M K(v,B.n)e Y (m(I)'*8

7
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where

[1—2-80-1)--1) 4350
(2.4) K(v,8,n) =
[log,(4n)]v ! if 3=0.
Remark. In general. we would expect M' = MK (v.3.n) = nM, since 0,1} is composed
of n intervals on which the bound (2.3) holds. Proposition 1, however, shows that, in fact.
when 8 > 0, M' can be made ‘ndependent of n, and even for 3 = 0 the growth is at most

logarithmic in n.

Proof. We split I C 0,1} in two halves, split each half again. and so on, until, after
k = [logy[n-m(I)]] < logy[nm(I)] + 1 =log, 2[nm(I)] < log,(2n)

splittings, we end up with intervals of size less than 1.

Let I, denote any interval which appeared at the k — j splitting: thus f; = I, and /I,

is some interval such that m(I;) < 1. We show now by induction on j that

(2.5) P{glJ > (} <e, MY m(IJ)l-a,

where the sequence ¢, is given by

1

o €, 1\ o-1
(2.6) co=1. (¢;)=1 =1+ (—;%) .

For j = 0, this is just assumption (2.3). For j > 1, let I; and I;' denote the two halves of
I,. Then

P{max(g,},glju) > (} < 2P{g,; > (}

<2¢; . Mc¥ m(I)*A

€y-1 -
= -%E—M e m(L)*5.

Relation (2.6) now follow= from the fact, that if X,Y,Z are random variables satisfying

0<X<Y+2Z,P{Z2¢}<McVand P{Y 2 ¢} <cMe ¥, then

P{X>e < inf
0<A<]

P{Y > (1-A)}+P{Z> A(}]

(2.7) < inf Mz"[c(l—»\)”"+)‘ "]

T 0<A<l

M4 ety

8
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Using (2.6) with 8 = 0 yields

()71 =14 (chy)e 1 ==k + 1.

and

= (k+1)""1 < (log, 41)" !

On the other hand. if 3 > 0. then

(cu)*
yielding (2.4). g
3. Inner and outer sub-triaddivity
We focus at first on deterministic functions H defined on
[0.17 = {(n,rz.rs) 0<n << < 1}
or defined on all of R3.
Definition. A function H :{0,1]2 — R~ is called inner sub-triadditive if it satisfies
(3.1) H(zy,z,27) < H(zy,2z,y) + H(z,.y.13)
whenever z; <z < y < zy, and
(3.2) H(zy,z,z;) L H(y,z,z3) + H(z,,y,13)

whenever z; <y <z < 7;.
A function H : R3 — R7 is called inner sub-triadditive if it satisfies (3.1) and (3.2) for

any reals z,,z,z,,y.

Definition. A function H : [0, l]% — R is called outer sub-triadditive if it satisfies

(33) H(-‘E],Z,IQ)SH(Il,I,y)+H(I,1'2,y)

9
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whenever r; <z < z; Ly, and
(3.4) H(z;,z.73) < H(y.r.73) + H{y.1).7)

whenever y < r; < r < 71,.

A function H : R?® — R is called outer sub-triadditive if it saticfies (3.3) and (3.4 for
any r;,7,73.y in R.

J and M are examples of functions that are both inner and outer sub-triadditive (see
Appendix). We show next why inner or outer sub-triadditivity are useful properties. But
first. some notation.

If I = [t;,t,] is an interval. let t; denote the middle pointin I. and let I' = lty. ] I =

[t;,t;) denote the two half intervals of I.

Lemma 2. (a) If the function [ :[0.1]2 — R _ is tnver sub-triadditive. then

(3.5) }’,gmax{f,,.j,,,}+f(t,.t,.zz).

(b) If. moreover. [ is ouler sub-triadditive, then

(3.6) /i1 < max‘{f},.f;,,} + o+ St flt gty
Proof (a) If t < t;. then by (3.1).

Sty ttg) < flthtty) + [t 4. 0,)
<Sp+ fihattg),
while if t > {7, by (3.2) we have similarly
Fitn ttg) < [+ [ty ty).
(b) If ) <a<b<t; <c<ty then
fla,b,c) < f(a,b,t;)+ fla,ty,c) (by inner sub-triadditivity)
< fla,bty)+ f(ty tr.c) + f(ty.a.ty) (by outer sub-triadditivity)

< fla,b,ty) + f(ty.a,ty) + f(ty. 1. 6) + f(t;.c.ty) (by outer sub-triadditivity)

<Tp+fr+ i+ fltitt)

< R.H.S. of (36).




-

In the same way, we get

(3.7) Jla,b,¢) < R.H.S. of (3.6)

when t; < a < {; < b < e <t,. and since (3.7) is obvious when a.b.c € I'or a. b.c € J".
(3.6) holds. (]

We consider now an a.s. random sub-triadditive function of a process Z. denoted [,
Recall that we assume that the process Z satisfies assumption (B). We will always assume

that random sub-triadditive functions fz also satisfy

(3.8) Jz(ty.t.t) = fz(t],1',15)

whenever (t;,t}), (¢,t') and (f;.t,) are pairs of points for which Z is constant on the
interval between them.

Note that both Hz and H satisfy (3.8), where H is either J or M.

We will now prove Theorem 2.
Proof of Theorem 2. (a) The result follows from Proposition 1 of Section 2. applied to
the functions g; = f;(!1,4;) and h; = fz(t;,;,t;). Indeed, (2.1) holds by Lemma 2a. For
(2.3), note that if J = [t;,1,] is such that {; —#; < !, then by Assumption (B) on Z and

by Assumption (3.8) on f7 we have
P{gj > t} = P{?z(’u’z) > (}
= P{max[fz(tlJx»fz)’fz(tlatzatz)] > f}
< Plrztnti) 2 f 4 P{ szt 2

< 2Le¥(ty — t;)'*A,

Thus (2.3) holds with M = 2L, and clearly (2.2) holds also with Af = 2L. We get then by

Proposition 1

P{Tz(l) Z (} S 2K(u,ﬂ,n)L(“"(tg - t))l+ﬂ,

with K (v, 3,n) given by (2.4).

11
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(b) The result follows again from Proposition 1, this time applied to \
g1 = fz(t1.13)

and 4

hy=fa(tit)) + f2(t. ) + fz(ti 11 ). - M

Relation (2.1) holds by Lemma 2b.

We check now (2.2).

: T ' 1-2 " 1-A ;

P{h,ze} <t [P{7an > 52 }+P{fz M2 (52 §
+L(A()—y(t2—t))“3

< : — 4 -V -V, — ¢ 1’3. .

"051221 (=AY + A }L( {t — t1) 3

The last step holds by part (a), with .

c=21*1-v1-BK (v B.n) = 2"V PR (v.3.n).

L)

~

As in (2.7), we then get !
) v-+1 N

P{h, > (} (1+2‘ 8:v=1 K (v, 3. n)_‘1> Lv(ty — )17 »

(3.9) " .
<K@am[1+2 ] L - ), 2

since K (v,8,n) > 1.
To check (2.3), let J = [t;,t;] be such that t, — {; < 1. Then. as in part (a). "
P{T} > c} < 2L V(ty — 1) 0. _

4

Hence (2.2) and (2.3) hold with v
L

M= K(V,ﬂ,n)max{z,[l + 2! ﬂ,’(w:)]uﬂ }
Applying Proposition 1, we get

P{TZ(I) > ¢} < A(v,B,n)Le " (t; ~ t,)' P

12
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where

(3.10) A(v,8,n) = K’(u,ﬁ, n) max{z’ [1 + 2~ B/t~ l)]u*l }

{ [1- 2—B/(u+l)]-(2u~2) max{2,[1 + 2—B’(v-»1)]v~1} if8>0

3"+l(log2(4n))2""2 if 5 =0.
This concludes the proof. g
Appendix

Lemma Al. The deterministic functions J and M defined in (1.1) are inner and outer

sub-triadditive.
Proof. (a) Inner sub-triadditivity

Since J and M are symmetric in r;,z;. it is enough to check (3.1). For J, we must

show that
(A4.1) le—ziAlz -zl <z - Alz -yl + o - ylAly - 2,
holds.
If |z - z;| < |z — y|, then
R.H.S.of (A.1) > |z~ ;{2 L.H.S.of (A.1).

If |z - y| < |z — z,], then either the R.H.S. of (A.1) equals |z — y| + |7; — y| 2 |z — 1,].
or the R.H.S. of (A.1) equals |z — y| + |y — 22| 2 |z — z,|. Hence (A.1) holds.

Now for M, we check again (3.1) in different cases:
() =z € |z;,25); then M(z;,x,25) = 0.
If z ¢ [z),2,], w.lo.g., let < 2| < z,; we have the following subcases:

(b)) y<z<z;<1zIH then

Mz, z,z3) =2 ~2< 2, -y = M(2),y,1,).

13




() r < y< I < zp then

Mz, z,z)=ay—z=(y—2)+ (2) — y) = M(21,2,y) + M(z,.9,22).

(d) r < r; < y:then
M(zy,z,73) =z, -2 =M(x,,2.y).
(b) Outer sub-triadditivity

Since J, M are symmetric in r;, ;. it is enough to check (3.3). For J, we must show

that
(4.2) 2= 2| Alz = 23] < |z = 1| Al =yl + a2 - 2| A |z = o]

holds. The only case different from part (a) is when |7 —y| < |z — ;| and |12 — 2| < |7~ y|.

In this case,
RHS. of (A2) =[r~y|l+|zg—z|>|za—y|> |z —2{> L.HS. of (A.2).
For H = M, we assume,w.log. z< 71 <1. fy<zr<z <15
M(zy,z,2;) =1, —2<zy—1=M(z,17.9).
fr<y<z <ay,
Mz, z,0;) =z, ~z < (y—2)+ (272 — y) = M(z;,2,y) + M(z,23.9).

fr<z <y,
M(II,I,12)=I]—22=M(I],I,y). [ |
Lemma A2. IfH : R3 — R isinner sub-triadditive, then the function Hj . f0,1]3S - R*

defined by
Hj(ty,t,ta) = sup H(Z(t)),2(1), Z(t3))

14 .
¢}e(¢,.c
theit ey
18 inner sub-triadditive.
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Proof. Since Hj(t;,1,t;) is defined only for ordered triples {; <t < {,, we have to

check that

(A.30) Ift; <t <u<ty, then Hz(t;,t,ty) < Hz(t;,t,u) + Hz(t).u,t;)
and

(A.3b) Ift; <u<t<t,, then Hz(t),t,ty) < Hy(u,t,ty) + Hz(t,u,ty).

Since the proofs are similar, we show only (A.3a). Also, for convenience, assume that the

sup is obtained, that is,
Hy(ty,0,0) = H(Z(1}). Z(1). Z(t})).

for some t},t), with t; <t) <t <t} <1,.
Let now t < u < tp; if u > t}, then, obviously, H(t;.t.t;) = Hy(t),t,u). and (A.3a)
holds. Suppose, hence u < t}; by the inner sub-triadditivity of H,
H(Z(t}),2(t), Z(ty)) < H(Z(t}). Z(1), Z(v)) + H(Z(t}), Z(u), Z(13))
< Hpz(ty,t,u) + Hyz(ty,u,ty).

The result follows by taking sup in the L.H.S. |

15
W A GO R S A e P AR T 2 TR I I PR I S N T o - fa it a . am
o < " S R S A A S A A O R TR AN Y N A P A I AT R Rt R RN ST X |
A e e AR "o N N b a2 L I e e 2 e e e VR L P L S
CLERCRIN L O G o IR SRR LG RS ﬁ,, S A S A g Nt L NG SN e



o -

- Ay S

oy

- -
™ -

[V R TR TR YO TON T TO R T O TR T U TIN ) L 42 ate mw A op Sk ab ¥ vl ol rah BaAln: At

References

(1] Avram, F. and Taqqu. M.S. (1987). Weak convergence of moving averages to the Lévy

stable motion. Preprint.
[2] Billingsley. P. (1968). Convergence of probability measures. Wiley & Sons, New York.
[3] Menchoff. D. (1923). Sur les séries de fonctions orthogonales 1. Fund. Math. 4. 82-105.

[4] Skorohod, A.V. (1956). Limit theorems for stochastic processes. Theory of Prob. Appl.
1 (1956), 261-290.

[5) Stout. W.F. (1974). Almost Sure Convergence. Academic Press. New York.

Florin Avram
Department of Statistics
Purdue University

West Lafavette, IN 47907

Murad S. Tagqu

Department of Mathematics

Boston University

Boston, MA 02215




0 aeal agt el Bt e

Lo a g

-
Z
<

-

T 1T
T
so il

X T
oQ
SO

- e e m s

1
p

SN N S A

' AN
NN AN IR Y

R AR L R S L ST, LR G SN Y




